A two-dimensional semi-analytic solution on two-layered liquid sloshing in a rectangular tank with a horizontal elastic baffle

نویسندگان

چکیده

A semi-analytic study on two-layered liquid sloshing in a horizontal excited two-dimensional rectangular tank with elastic baffle was performed. The present work is further development of the semi-analytical technique for solving single-layer problem. located lower or upper liquid. First, complex domain baffled divided into several simple sub-domains to solve analytic solution. wet mode presented according Eulerian Bernoulli beam. continuity boundary condition interfaces between two liquids and virtual given. Then, formal solution derived each sub-domain using superposition principle method separation variables. total velocity potential subject lateral excitation summed over container function disturbance potential. dynamic response equation established. Multiple methods verified solution's correctness agreed well other methods. Finally, numerical analysis mainly shows that density ratio becomes more significant coupled frequency when large baffle's width suppresses flow effectively. Furthermore, adjusting layered parameters can significantly suppress sloshing. For seismic response, elevation energy after 2.5 s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method

Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....

متن کامل

A boundary element study for evaluation of the effects of the rigid baffles on liquid sloshing in rigid containers

In this paper, the sloshing response of liquid in a two dimensional rigid rectangular tank with rigid baffles is investigated using boundary element technique. A baffle is a supplementary structural element which supplies a kind of passive control on the effects of ground shaking. The complicated liquid domain is divided into two simple sub-domains so that the liquid velocity potential in each ...

متن کامل

Analytical Solution for Two-Dimensional Coupled Thermoelastodynamics in a Cylinder

An infinitely long hollow cylinder containing isotropic linear elastic material is considered under the effect of arbitrary boundary stress and thermal condition. The two-dimensional coupled thermoelastodynamic PDEs are specified based on equations of motion and energy equation, which are uncoupled using Nowacki potential functions. The Laplace integral transform and Bessel-Fourier series are u...

متن کامل

A Closed-form Semi-analytical Elastic-Plastic Solution for Predicting the Onset of Flange Wrinkling in Deep-drawing of a Two-layered Circular Plate

In this paper to predict the critical conditions for onset of elastic-plastic wrinkling of flange of a two-layered circular blank during the deep-drawing process a closed-form semi-analytical elastic-plastic solution using Tresca yield criterion alongwith deformation theory in plasticity with considernig the perfectly plastic behaviour of materials is presented. Simplifying the presented soluti...

متن کامل

A Study on Liquid-liquid Mixing in a Stirred Tank with a 6-Blade Rushton Turbine

The turbulent flow field generated in a baffled stirred tank was computed by large eddy simulation (LED) and the flow field was developed using the Sliding Mesh (SM) approach. In this CFD study, mixing times and power number have been determined for a vessel agitated by a 6-blade Rushton turbine. The predicted results were compared with the published experimental data. The satisfactory results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 2023

ISSN: ['1527-2435', '1089-7666', '1070-6631']

DOI: https://doi.org/10.1063/5.0153071